Deleting the wiki page 'DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart' cannot be undone. Continue?
Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion criteria to build, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled variations of the designs as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that utilizes reinforcement learning to enhance thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial distinguishing feature is its reinforcement knowing (RL) step, which was utilized to refine the design's actions beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adapt more efficiently to user feedback and objectives, eventually boosting both importance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, meaning it's geared up to break down intricate queries and reason through them in a detailed manner. This guided thinking procedure enables the design to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually recorded the industry's attention as a versatile text-generation design that can be integrated into various workflows such as representatives, sensible reasoning and data analysis jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion criteria, making it possible for efficient reasoning by routing inquiries to the most relevant expert "clusters." This method allows the design to focus on various problem domains while maintaining total efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more efficient designs to mimic the habits and thinking patterns of the larger DeepSeek-R1 model, utilizing it as a teacher model.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this model with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent hazardous content, and evaluate models against key safety requirements. At the time of writing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce multiple guardrails tailored to different usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limitation increase, create a limitation increase demand and connect to your account group.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For directions, see Set up approvals to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, avoid harmful content, and assess models against crucial safety criteria. You can implement security measures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to assess user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The general circulation includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:
1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and pick the DeepSeek-R1 design.
The design detail page offers important details about the design's capabilities, pricing structure, and application standards. You can find detailed usage instructions, including sample API calls and code bits for integration. The model supports various text generation jobs, consisting of content production, code generation, and question answering, utilizing its support finding out optimization and CoT thinking abilities.
The page also includes deployment options and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, select Deploy.
You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of circumstances, enter a variety of instances (in between 1-100).
6. For Instance type, pick your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can set up innovative security and infrastructure settings, including virtual private cloud (VPC) networking, service role authorizations, and encryption settings. For most utilize cases, the default settings will work well. However, for production releases, you may want to review these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to begin utilizing the design.
When the implementation is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in play ground to access an interactive user interface where you can try out different triggers and adjust design specifications like temperature level and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum outcomes. For example, material for inference.
This is an excellent way to check out the model's thinking and text generation capabilities before integrating it into your applications. The play ground provides immediate feedback, setiathome.berkeley.edu assisting you understand how the model responds to various inputs and letting you fine-tune your triggers for ideal outcomes.
You can quickly check the design in the through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to carry out reasoning using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends out a demand to create text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses two convenient techniques: using the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both approaches to help you choose the approach that best fits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to develop a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design browser displays available designs, with details like the service provider name and design abilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each model card reveals key details, including:
- Model name
Deleting the wiki page 'DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart' cannot be undone. Continue?
Powered by TurnKey Linux.